

Instructor's Guide

ESSENTIAL CHEMISTRY: CORE CONCEPTS VIDEO CLIP LIBRARY

Introduction

This instructor's guide provides information to help you get the most out of *Essential Chemistry: Core Concepts Video Clip Library.* The program covers core chemistry concepts in a fast-paced, straightforward style. After watching the modules, students should have a grasp of atoms, molecules, and compounds, the basics of states of matter, the periodic table, chemical reactions, metals, biochemistry, carbon chemistry, earth chemistry, chemical bonds, and acids and bases. Subject matter experts explain these topics in a clear, concise manner, making them both interesting and transparent to students. Accompanying visuals bring chemical reactions and technical explanations to life. Overall, the modules in this video library are practical, easy to understand, and should help students clarify the building blocks of the science of chemistry.

Also available from Infobase Publishing: the *Essential Chemistry Set* (10-volume book set) and *Essential Chemistry Online* (eLearning Modules). (Visit www.infobasepublishing.com for more information.)

<u>Disc 1</u>:

Atoms, Molecules, and Compounds (pages 2 - 8) Carbon Chemistry (pages 9 - 15) The Periodic Table (pages 16 - 22) Chemical Bonds (pages 23 - 29) Chemical Reactions (pages 30 - 36)

<u>Disc 2</u>:

Acids and Bases (pages 37 - 43) Metals (pages 44 - 50) Biochemistry (pages 51 - 57) States of Matter (pages 58 - 64) Earth Chemistry (pages 65 - 72)

ATOMS, MOLECULES, AND COMPOUNDS

Learning Objectives

After viewing this module, students will be able to:

- Define and distinguish atoms, molecules, ions, and compounds
- Define and distinguish electrons, protons, and neutrons
- Understand how electron configuration influences the way in which elements are organized on the periodic table
- Explain different types of energy connected to atoms
- Explain how different compounds affect each other and make up the world around us

Clips

Clip 1: The Atom and the Quantum Model

Topics include the history of the atomic model, the discovery of the electron, the "solar system" model of the atom, and Bohr's Quantum Model.

Clip 2: The Nucleus

Topics include the properties of neutrons, protons, and electrons, binding energy, and fission and fusion.

Clip 3: The Electrons

Topics include some properties of electrons, the principal quantum number, the angular quantum number, and the Heisenberg uncertainty principle.

Clip 4: The Elements

Topics include the organization of the periodic table, valence, ionization, and electronegativity.

Clip 5: The Energy of Atoms

Topics include endothermic, exothermic, and spontaneous reactions, Gibbs free energy, and activation energy.

Clip 6: Common Compounds

Topics include the ionic bonds of salt, and the polarity and other unique properties of water.

Quiz

- Q1: Niels Bohr proposed that by emitting a specific amount or _____ of energy, an electron could move from a higher to a lower energy level while orbiting the nucleus, and that by absorbing energy it could jump to a higher energy level.
 - (a) neutron (b) photon
 - (c) quantum (d) cloud

Q2: Bohr's model of the atom was not widely accepted until scientists detected that electrons could behave

(a) both as a particle and as a wave	(b) both as a cloud and as a wave
(c) erratically	(d) according to a 'solar system' model

Q3: In the electron cloud model, rather than following fixed orbits, electrons bound to an atom are observed more frequently in certain areas around the nucleus called orbitals; their position in an atom is governed by _____.

(a) quanta	(b) chance
(c) the number of protons in their nucleus	(d) probability

Q4: The nucleus is the center of the atom	m, a densely packed area of
(a) protons	(b) neutrons
(c) protons and neutrons	(d) neutrinos

Q5: True or False? Protons have a positive charge, neutrons have a negative charge, and electrons have a neutral charge.

Q6: The process in which the nucleus of an element splits in two is _____.
(a) called "destabilization"
(b) called "fission"
(c) called "fusion"
(d) represented by Einstein's equation E = mc²

Q7: True or False? Although the size of an atom is about ten billionths of an inch, most of it is empty space, due to the even tinier size of the nucleus.

Q8: The lowest energy level (closest to the nucleus) in an atom is written as _____. (a) $1s^1$ (b) n = 1(c) n = 0 (d) s = 1

- Q9: Quantum numbers are four numbers used to describe electrons in an atom. The number referred to in Q8 is also called the _____, and it refers to how far away an electron is from the nucleus, and the amount of energy contained in its orbital.
 - (a) principal quantum number
 - (c) magnetic quantum number
- (b) angular quantum number
- (d) spin quantum number

Q10: The _____, in part, describes the shape of an atom's orbitals (and where electrons may be distributed within them). It uses the letters s, p, d, and f to refer to these shapes, with "s" being the lowest energy level.

- (a) principal quantum number
- (b) angular quantum number

(c) magnetic quantum number (d) spin quantum number

- Q11: The Heisenberg uncertainty principle states _____
 - (a) that electrons sometimes act as though they were particles, and sometimes as waves
 - (b) that the quantum model of the atom has not been proven definitively
 - (c) that an observer can never determine the exact shape of an atom's orbitals
 - (d) that an observer cannot know both the exact position and the velocity of a subatomic particle at the same time
- Q12: True or False: The arrangement of elements on the periodic table is due largely to recurring patterns in their electron configurations.

Q13: _____ are the electrons in an atom's outermost orbital. They govern how atoms combine with each other to form compounds.

- (a) Quark electrons
- (c) Ionic electrons

- (b) Covalent electrons
- (d) Valence electrons

Q14: Adding or removing one or more electrons from an atom results in an electrically charged particle called a(n) _____.

(a) ion(b) valence(c) photon(d) volt

Q15: _____ measures the tendency of an atom to attract electrons.

- (a) Ionization (b) Electricity
- (c) Electronegativity (d) Reactivity

5

Q16: _____ reactions soak up heat as they proceed, cooling the local environment.

- (a) Exothermic
- (c) Spontaneous

(b) Endothermic

(d) Combustion

 Q17: When two elements have similar electronegativities, they can form a(n) _____ bond.

 (a) ionic
 (b) exothermic

 (c) electric
 (d) covalent

Q18: _____ energy is the least amount of energy needed for a chemical reaction to take place. (a) Potential (b) Activation

(c) Gibbs free (d) Minimal

Q19: Because of the attraction between salt ions and the electric dipoles of water molecules, salt is said to be _____.

(a) electromagnetic	(b) hydrophobic
(c) hydrophilic	(d) crystalline

Q20: One of the unique properties of water is that it is _____, meaning that part of the molecule has a positive charge, and part has a negative charge.

L	0	T	0	0	
(a) polar					(b) binary
(c) magnet	ic				(d) dioxic

Answers

Q1: Niels Bohr proposed that by emitting a specific amount — or _____ — of energy, an electron could move from a higher to a lower energy level while orbiting the nucleus, and that by absorbing energy it could jump to a higher energy level.

- (a) neutron (b) photon
- (c) quantum (d) cloud
- A: (c) quantum

Q2: Bohr's model of the atom was not widely accepted until scientists detected that electrons could behave

- (a) both as a particle and as a wave
- (c) erratically

- (b) both as a cloud and as a wave
- (d) according to a 'solar system' model
- A: (a) both as a particle and as a wave

Q3: In the electron cloud model, rather than following fixed orbits, electrons bound to an atom are observed more frequently in certain areas around the nucleus called orbitals; their position in an atom is governed by _____.

- (a) quanta (b) chance
- (c) the number of protons in their nucleus (d) probability
- A: (d) probability

Q4: The nucleus is the center of the atom, a densely packed area of _____.

- (a) protons
- (b) neutrons
- (c) protons and neutrons
- (d) neutrinos
- A: (c) protons and neutrons
- Q5: True or False? Protons have a positive charge, neutrons have a negative charge, and electrons have a neutral charge.
- A: False neutrons have a neutral charge, while electrons are negatively charged.
- Q6: The process in which the nucleus of an element splits in two is _____.
 (a) called "destabilization"
 (b) called "fission"
 (c) called "fusion"
 (d) represented by Einstein's equation E = mc²
- A: (b) called "fission"

7

- Q7: True or False? Although the size of an atom is about ten billionths of an inch, most of it is empty space, due to the even tinier size of the nucleus.
- A: True.

Q8: The lowest energy level (closest to the nucleus) in an atom is written as _____.

- (a) $1s^{1}$ (b) n = 1(c) n = 0(d) s = 1
- A: (b) n = 1

Q9: Quantum numbers are four numbers used to describe electrons in an atom. The number referred to in Q8 is also called the _____, and it refers to how far away an electron is from the nucleus, and the amount of energy contained in its orbital.

(a) principal quantum number

(c) magnetic quantum number

A: (a) principal quantum number

- (b) angular quantum number
- (d) spin quantum number

Q10: The _____, in part, describes the shape of an atom's orbitals (and where electrons may be distributed within them). It uses the letters s, p, d, and f to refer to these shapes, with "s" being the lowest energy level.

- (a) principal quantum number
- (b) angular quantum number

(d) spin quantum number

- (c) magnetic quantum number
- A: (b) angular quantum number

Q11: The Heisenberg uncertainty principle states _____.

- (a) that electrons sometimes act as though they were particles, and sometimes as waves
- (b) that the quantum model of the atom has not been proven definitively
- (c) that an observer can never determine the exact shape of an atom's orbitals
- (d) that an observer cannot know both the exact position and the velocity of a subatomic particle at the same time
- A: (d) that an observer cannot know both the exact position and the velocity of a subatomic particle at the same time
- Q12: True or False: The arrangement of elements on the periodic table is due largely to recurring patterns in their electron configurations.

A: True.

Q13: are the electron	ns in an atom's outermos	st orbital. They govern h	now atoms combine with each	
(a) Quark electrons (c) Ionic electrons A: (d) Valence electrons		(b) Covalent electrons(d) Valence electrons		
Q14: Adding or removing o called a(n)	ne or more electrons fro	om an atom results in ar	n electrically charged particle	
(a) ion A: (a) ion	(b) valence	(c) photon	(d) volt	
Q15: measures the te (a) Ionization A: (c) Electronegativity	endency of an atom to a (b) Electricity	ttract electrons. (c) Electronegativity	(d) Reactivity	
Q16: reactions soak (a) Exothermic A: (b) Endothermic	up heat as they proceed, (b) Endothermic	, cooling the local enviro (c) Spontaneous	onment. (d) Combustion	
Q17: When two elements h (a) ionic A: (d) covalent	ave similar electronegati (b) exothermic	ivities, they can form a(r (c) electric	n) bond. (d) covalent	
Q18: energy is the le (a) Potential A: (b) Activation	ast amount of energy ne (b) Activation	eeded for a chemical rea (c) Gibbs free	ction to take place. (d) Minimal	
Q19: Because of the attracti to be	on between salt ions and	d the electric dipoles of	water molecules, salt is said	
(a) electromagnetic A: (c) hydrophilic	(b) hydrophobic	(с) пуагорпше	(u) crystalline	
Q20: One of the unique pro positive charge, and p	operties of water is that art has a negative charge	it is, meaning th	at part of the molecule has a	
(a) polar A: (a) polar	(b) binary	(c) magnetic	(d) dioxic	

CARBON CHEMISTRY

Learning Objectives

After viewing this module, students will be able to:

- Discuss the properties of carbon and describe its ability to form compounds
- Identify the four categories of biomolecules, including the specifics of proteins, carbohydrates, lipids, and nucleic acids
- Understand how DNA and RNA work
- Define and describe the carbon cycle, including the impact of human activity on the cycle
- Explain the variety of carbon-based products we use every day

Clips

Clip 1: Carbon Compound Chemistry

Topics include the element carbon, chemical bonds, carbon bonds, hydrocarbon compounds (alkanes, alkenes, alkynes), and functional groups.

Clip 2: Biomolecules

Topics include proteins (enzymes, amino acids, peptide bonds), carbohydrates (sugars, starch, cellulose, glycogen), lipids (fats, waxes, steroids), and nucleic acids (DNA, RNA, nucleotides, protein synthesis)

Clip 3: The Carbon Cycle

Topics include photosynthesis, respiration, decomposition, fossil fuels, carbon sinks, and the role of humans in the carbon cycle.

Quiz

Q1: True or False? Carbon forms the backbone of all kinds of compounds necessary for life (for instance, DNA, proteins, fats, carbohydrates). It is present in all living things.

Q2: Carbon is a(n) _____.
(a) metallic element
(b) nonmetallic element
(c) alkaline earth metal
(d) transition metal

Q3: A chemical bond is formed when an atom _____.

(a) adds electrons from another atom
(c) shares electrons with another atom
(d) All of the above

Q4: When a carbon atom joins a hydrogen atom they become _____.(a) a molecule of water(b) a hydrogenated fat(c) a hydrocarbon compound(d) a carbonated compound

Q5: Alkenes are _____.

- (a) hydrocarbons with a single bond; the major component in natural gases, fuels, and gasoline
- (b) hydrocarbons with a double bond; found in plastic grocery bags and milk bottles
- (c) hydrocarbons with a triple bond; used in pharmaceuticals and medications

Q6: Alkanes are ____

- (a) hydrocarbons with a single bond; the major component in natural gases, fuels, and gasoline
- (b) hydrocarbons with a double bond; found in plastic grocery bags and milk bottles
- (c) hydrocarbons with a triple bond; used in pharmaceuticals and medications

Q7: Alkynes are _____.

- (a) hydrocarbons with a single bond; the major component in natural gases, fuels, and gasoline
- (b) hydrocarbons with a double bond; found in plastic grocery bags and milk bottles
- (c) hydrocarbons with a triple bond; used in pharmaceuticals and medications

Q8: There are millions of different carbon compounds, divided into families according to their _____.

(a) atomic number

- (b) type of hydrocarbon bond(d) functional group
- (c) periodic group

Q9: Biomolecules all contain _____. (Choose all that apply.)

- (a) carbon
- (c) hydrogen

(b) nitrogen (d) oxygen

Q10: The major classes of biomolecules are _____.

- (a) proteins, carbohydrates, and lipids
- (b) proteins, carbohydrates, lipids, and nucleic acids
- (c) amino acids, nucleic acids, lipids, and non-lipids
- (d) acids and lipids

Q11: ______ serve as energy storage compounds; they can contain twice as much energy as other types of biomolecules.

- (a) Amino acids (b) Carbohydrates
- (d) Proteins (c) Lipids

Q12: Enzymes — special _____ found in the body's cells — are necessary for all chemical reactions of life.

(a) acids (b) carbohydrates (c) lipids (d) proteins

Q13: Nucleic acids are _____.

- (a) organic polymers that break down waste products in the cell
- (b) non-lipids that aid in the transport of energy
- (c) a type of amino acid necessary for cell division
- (d) organic polymers, such as DNA and RNA, that carry hereditary information

Q14: Most living things break glucose down for energy, and use starch and glycogen as energy storage compounds. Glucose, starch, and glycogen are all _

- (b) polypeptides (a) peptides
- (c) carbohydrates

(d) fats

- Q15: Peptide bonds ____
 - (a) link amino acids together
 - (c) are formed by nucleotides in DNA
- (b) link hydrocarbons together
- (d) are formed by proteins and carbohydrates

- Q16: True or False? The carbon cycle is the movement of carbon atoms through the atmosphere, oceans, all living organisms (including plants, animals, and humans), and the Earth.
- Q17: Scientists identify specific ways in which carbon atoms cycle through the biosphere. These are: ____. (Choose all that apply.)
 - (a) photosynthesis
 - (c) digestion
 - (e) reproduction
 - (g) weather

- (b) respiration
- (d) decomposition
- (f) burning

Q18: The main process by which carbon dioxide is removed from the atmosphere is _____.

- (a) photosynthesis (b) respiration (c) burning (d) weathering
- Q19: The process that living organisms use to break down nutrients to create energy is called _____.
 - (a) photosynthesis (b) respiration
 - (c) digestion

- (d) decomposition
- Q20: Although we may debate the consequences, it is clear that humans have changed the equation of the carbon cycle through _____. (Choose all that apply)
 - (a) deforestation (which removes carbon sinks)
 - (b) digging up and burning fossil fuels (adding carbon to the atmosphere in an unnatural way)
 - (c) mining (which removes carbon sinks)
 - (d) All of the above

Answers

Q1: True or False? Carbon forms the backbone of all kinds of compounds necessary for life (for instance, DNA, proteins, fats, carbohydrates). It is present in all living things.

A: True.

 Q2: Carbon is a(n) _____.
 (a) metallic element
 (b) nonmetallic element

 (c) alkaline earth metal
 (d) transition metal

 A: (b) nonmetallic element
 (d) transition metal

Q3: A chemical bond is formed when an atom _____. (a) adds electrons from another atom (b) loses electrons to another atom

(c) shares electrons with another atom

A: (d) All of the above

Q4: When a carbon atom joins a hydrogen atom they become _____.

- (a) a molecule of water
- (c) a hydrocarbon compound

(b) a hydrogenated fat

(d) All of the above

(d) a carbonated compound

A: (c) a hydrocarbon compound

Q5: Alkenes are _____.

(a) hydrocarbons with a single bond; the major component in natural gases, fuels, and gasoline

(b) hydrocarbons with a double bond; found in plastic grocery bags and milk bottles

(c) hydrocarbons with a triple bond; used in pharmaceuticals and medications

A: (b) hydrocarbons with a double bond; found in plastic grocery bags and milk bottles

Q6: Alkanes are _____.

(a) hydrocarbons with a single bond; the major component in natural gases, fuels, and gasoline

(b) hydrocarbons with a double bond; found in plastic grocery bags and milk bottles

(c) hydrocarbons with a triple bond; used in pharmaceuticals and medications

A: (a) hydrocarbons with a single bond; the major component in natural gases, fuels, and gasoline

- Q7: Alkynes are _____.
 - (a) hydrocarbons with a single bond; the major component in natural gases, fuels, and gasoline

(b) hydrocarbons with a double bond; found in plastic grocery bags and milk bottles

- (c) hydrocarbons with a triple bond; used in pharmaceuticals and medications
- A: (c) hydrocarbons with a triple bond; used in pharmaceuticals and medications

Q8: There are millions of different carbon compounds, divided into families according to their _____.

- (a) atomic number
- (c) periodic group

(b) type of hydrocarbon bond

Carbon Chemistry

(d) functional group

A: (d) functional group

Q9:	Biomolecules all contain _	(Choose all that apply.)
	(a) carbon	(b) nitrogen
	(c) hydrogen	(d) oxygen

- A: (a) carbon; (c) hydrogen; (d) oxygen
- Q10: The major classes of biomolecules are _____.
 - (a) proteins, carbohydrates, and lipids
 - (b) proteins, carbohydrates, lipids, and nucleic acids
 - (c) amino acids, nucleic acids, lipids, and non-lipids

(d) acids and lipids

A: (b) proteins, carbohydrates, lipids, and nucleic acids

Q11: ______ serve as energy storage compounds; they can contain twice as much energy as other types of biomolecules.

- (a) Amino acids
- (c) Lipids

- (b) Carbohydrates
- (d) Proteins

A: (c) Lipids

Q12: Enzymes — special _____ found in the body's cells — are necessary for all chemical reactions of life. (a) acids

(c) lipids

(b) carbohydrates

(d) proteins

A: (d) proteins

Q13: Nucleic acids are _____.

- (a) organic polymers that break down waste products in the cell
- (b) non-lipids that aid in the transport of energy
- (c) a type of amino acid necessary for cell division
- (d) organic polymers, such as DNA and RNA, that carry hereditary information

A: (d) organic polymers, such as DNA and RNA, that carry hereditary information

Carbon Chemistry Q14: Most living things break glucose down for energy, and use starch and glycogen as energy storage compounds. Glucose, starch, and glycogen are all _ (a) peptides (b) polypeptides (c) carbohydrates (d) fats A: (c) carbohydrates Q15: Peptide bonds _ (a) link amino acids together (b) link hydrocarbons together (c) are formed by nucleotides in DNA (d) are formed by proteins and carbohydrates A: (a) link amino acids together Q16: True or False? The carbon cycle is the movement of carbon atoms through the atmosphere, oceans, all living organisms (including plants, animals, and humans), and the Earth. A: True Q17: Scientists identify specific ways in which carbon atoms cycle through the biosphere. These are: ____. (Choose all that apply.) (a) photosynthesis (b) respiration (c) digestion (d) decomposition (e) reproduction (f) burning (g) weather A: (a) photosynthesis; (b) respiration; (d) decomposition; (f) burning; (g) weather Q18: The main process by which carbon dioxide is removed from the atmosphere is _____. (a) photosynthesis (b) respiration (c) burning (d) weathering A: (a) photosynthesis Q19: The process that living organisms use to break down nutrients to create energy is called _____. (a) photosynthesis (b) respiration (c) digestion (d) decomposition A: (b) respiration Q20: Although we may debate the consequences, it is clear that humans have changed the equation of the carbon cycle through _____. (*Choose all that apply*) (a) deforestation (which removes carbon sinks) (b) digging up and burning fossil fuels (adding carbon to the atmosphere in an unnatural way) (c) mining (which removes carbon sinks)

- (d) All of the above
- A: (a) deforestation (which removes carbon sinks); (b) digging up and burning fossil fuels (adding carbon to the atmosphere in an unnatural way)

The Periodic Table

Learning Objectives

After viewing this module, students will be able to:

- Describe the contents and general organizational structure of the periodic table
- Understand the history of elements and creation of the periodic table
- Explain how elements are grouped and the like properties they share
- Describe how different elements and groups of elements interact with each other

Clips

Clip 1: The History of the Periodic Table

Topics include the history of the discovery of elements, and their initial organization on the first periodic table.

Clip 2: Metals

Topics include alkali, alkaline earth, and transition metals, and their properties as they relate to the periodic table; and hydrogen.

Clip 3: Lanthanides, Actinides, and Transuranium Elements

Topics include the special properties of lanthanides and actinides; transuranium and super-heavy elements; and uses for uranium.

Clip 4: The BCNOs

Topics include the properties of boron, carbon, nitrogen, and oxygen.

Clip 5: Halogens and Noble Gases

Topics include halogens and noble gases, and their properties as they relate to the periodic table.

Quiz

- Q1: The ancient Greeks classified the fundamental elements as fire, earth, air, and water, and believed that
 - (a) the elements were made of tiny invisible particles that could not be broken down any further
 - (b) the elements could not be used to form any new materials
 - (c) the elements had been created by the gods for use by humans
 - (d) the elements themselves could be broken down into infinitesimally smaller substances
- Q2: True or False? Throughout the 18th and early 19th centuries, the list of elements and their atomic weights remained random, each chemist using a different order.

Q3: The scientist credited with "discovering	g" the periodic table is
(a) Sir Humphrey Davy	(b) Robert Boyle
(c) John Dalton	(d) Dmitri Mendeleyev

Q4: The number at the top of each element's box on the periodic table represents _____.

- (a) its atomic weight (the number of protons contained in an atom of that element)
- (b) its atomic number (the number assigned to the element when the table was first created)
- (c) its atomic number (the number of protons contained in an atom of that element)
- (d) its relative atomic mass

Q5: Each row on the table is called a(n) _____, and each of the elements within this has the same number of electron shells.

(a) group	(b) period
(c) electron group	(d) shell

Q6: Most of the elements are metals, and some of the elements that people know best — iron, nickel, copper, zinc, silver, gold, mercury — are ____.

- (a) alkali metals (b) alkaline earth metals
- (c) transition metals (d) metalloids
- Q7: The metals in Groups 1 and 2 are known for being _____.
 - (a) radioactive (b) very malleable
 - (c) very stable (d) very reactive

Q8: The element that forms more compounds than any other is _____

- (a) hydrogen
- (d) nitrogen (c) oxygen

Q9: On most periodic tables, lanthanides and actinides are located _____.

- (a) on the right side of the table
- (b) on the left side of the table
- (c) in the middle of the table, after the transition metals
- (d) in two rows on the bottom, separate from the rest of the table

Q10: An unusual property of _____ is that they add electrons to their inner, rather than their outer, shell. (a) lanthanides (b) actinides

(b) sodium

(c) transuranium elements (d) All of the above

Q11: _____ are used in the manufacture of color TVs, computer monitors, fiber-optic cables, and postage stamps.

(a) lanthanides (b) actinides (c) transuranium elements (d) All of the above

Q12: _____ have been discovered during the development and testing of fission, atomic, and hydrogen bombs. (a) Lanthanides (b) Actinides

- (c) Transuranium elements
- (d) both (b) and (c)

Q13: The BCNO group on the periodic table is named after _____

- (a) boron, calcium, nitrogen, and oxygen
- (c) barium, cesium, neon, and oxygen
- (b) boron, carbon, nitrogen, and oxygen
- (d) bromine, chlorine, neon, and oxygen
- Q14: Elements in the BCNO group are ____ (a) metals (b) nonmetals (c) metalloids (d) some of each of the above
- Q15: Some important metalloids, such as _____, are also called semiconductors. These can conduct heat and electricity, but can also act like nonconductors or insulators (these properties make semiconductors 'the brains' behind computers and other electronic devices).
 - (a) carbon (b) aluminum
 - (c) silicon

(d) radium

Q16: The most abundant element on earth is _____. (a) carbon (b) oxygen (c) hydrogen (d) calcium

Q17: True or False? The noble gases were named for their "royal" way of staying apart from other elements (they are the least reactive of the elements).

- Q18: Halogens are among the _____ elements.(a) rarest(b) least chemically reactive(c) most chemically reactive(d) most stable
- Q19: The reason that halogens behave as they do in regards to different elements (especially those in Group 1) is because _____.
 - (a) they have 7 electrons in their outer shell
 - (b) they have 8 electrons in their outer shell
 - (c) some of them are solids and some are gases
 - (d) they are among the lightest of the elements
- Q20: The noble gases have also been called _____.
 - (a) heavy metals
 - (c) xenons

- (b) radon gases
- (d) inert gases

Answers

- Q1: The ancient Greeks classified the fundamental elements as fire, earth, air, and water, and believed that
 - (a) the elements were made of tiny invisible particles that could not be broken down any further
 - (b) the elements could not be used to form any new materials
 - (c) the elements had been created by the gods for use by humans
 - (d) the elements themselves could be broken down into infinitesimally smaller substances
- A: (a) the elements were made of tiny invisible particles that could not be broken down any further
- Q2: True or False? Throughout the 18th and early 19th centuries, the list of elements and their atomic weights remained random, each chemist using a different order.
- A: False. At this time the list of elements was arranged from lightest to heaviest, and some scientists started to recognize patterns within the list.

Q3: The scientist credited with "discovering" the periodic table is _____. (a) Sir Humphrey Davy

(c) John Dalton

(b) Robert Boyle

(d) Dmitri Mendeleyev

A: (d) Dmitri Mendeleyev

Q4: The number at the top of each element's box on the periodic table represents _____.

- (a) its atomic weight (the number of protons contained in an atom of that element)
- (b) its atomic number (the number assigned to the element when the table was first created)
- (c) its atomic number (the number of protons contained in an atom of that element)
- (d) its relative atomic mass
- A: (c) its atomic number (the number of protons contained in an atom of that element)

Q5: Each row on the table is called a(n) _____, and each of the elements within this has the same number of electron shells.

- (b) period (a) group (c) electron group (d) shell
- A: (b) period

Q6: Most of the elements are metals, and some of the elements that people know best — iron, nickel, copper, zinc, silver, gold, mercury — are ____

(a) alkali metals

(b) alkaline earth metals

(d) metalloids

(c) transition metals

A: (c) transition metals

Essential Chemistry: Core Concepts Video Clip Library @ 2010 Films for the Humanities & Sciences* • An imprint of Infobase Publishing 20 Q7: The metals in Groups 1 and 2 are known for being _____. (a) radioactive (b) very malleable (c) very stable (d) very reactive

A: (d) very reactive

Q8: The element that forms more compounds than any other is _____. (a) hydrogen (b) sodium (c) oxygen (d) carbon

A: (a) hydrogen

Q9: On most periodic tables, lanthanides and actinides are located _____.

- (a) on the right side of the table
- (b) on the left side of the table
- (c) in the middle of the table, after the transition metals
- (d) in two rows on the bottom, separate from the rest of the table
- A: (d) in two rows on the bottom, separate from the rest of the table
- Q10: An unusual property of ______ is that they add electrons to their inner, rather than their outer, shell.

 (a) lanthanides
 (b) actinides

 (c) transuranium elements
 (d) All of the above
- A: (a) lanthanides

Q11: _____ are used in the manufacture of color TVs, computer monitors, fiber-optic cables, and postage stamps.

(a)	lanthanides
(c)	transuranium elements

(b) actinides(d) All of the above

A: (a) lanthanides

Q12: _____ have been discovered during the development and testing of fission, atomic, and hydrogen bombs.(a) Lanthanides(b) Actinides(c) Transuranium elements(d) both (b) and (c)

A: (d) both transuranium elements and other actinides

Q13: The BCNO group on the periodic table is named after _____.

- (a) boron, calcium, nitrogen, and oxygen
- (c) barium, cesium, neon, and oxygen
- (b) boron, carbon, nitrogen, and oxygen
- (d) bromine, chlorine, neon, and oxygen

A: (b) boron, carbon, nitrogen, and oxygen

(b) nonmetals

(d) some of each of the above

Q15: Some important metalloids, such as _____, are also called semiconductors. These can conduct heat and electricity, but can also act like nonconductors or insulators (these properties make semiconductors 'the brains' behind computers and other electronic devices).

- (a) carbon (b) aluminum
- (c) silicon (d) radium

A: (c) silicon

Q16: The most abundant element on ear	rth is
(a) carbon	(b) oxygen
(c) hydrogen	(d) calcium
A: (b) oxygen	

Q17: True or False? The noble gases were named for their "royal" way of staying apart from other elements (they are the least reactive of the elements).

A: True.

Q18: Halogens are among the elements.	
(a) rarest	(b) least chemically reactive
(c) most chemically reactive	(d) most stable
A: (c) most chemically reactive	

Q19: The reason that halogens behave as they do in regards to different elements (especially those in Group 1) is because _____.

- (a) they have 7 electrons in their outer shell
- (b) they have 8 electrons in their outer shell
- (c) some of them are solids and some are gases
- (d) they are among the lightest of the elements

A: (a) they have 7 electrons in their outer shell

Q20: The noble gases have also be	en called
(a) heavy metals	(b) radon gases
(c) xenons	(d) inert gases
A: (d) inert gases	

CHEMICAL BONDS

Learning Objectives

After viewing these clips, students will be able to:

- Explain the role that electrons play in chemical bonds
- Describe ionic, covalent, and metallic bonds
- Explain the properties of metals
- Define intermolecular bonding

Clips

Clip 1: Ionic Bonds

Topics include the electronegativities of atoms, Coulomb's law, and the bond polarity chart.

Clip 2: Covalent Bonds

Topics include polar covalent bonds, coordinate covalent bonds, Lewis dot structures, ionic-bonded salts, double and triple bonds, resonance structures, and electron delocalization.

Clip 3: Metallic Bonds

Topics include the properties of metals, conductivity, ion cores, delocalized electrons, substitutional and interstitial alloys, and slip planes.

Clip 4: Intermolecular Bonding

Topics include van der Waals forces, dipoles, dipole moment, electronegativity, hydrogen bonds, unbounded electrons, and polar covalent bonds.

Quiz

- Q1: The migration of an electron changes the nature of the atoms involved. Thus, they are no longer called atoms instead, they are called _____.
 - (a) cations

- (b) protons
- (c) ions (d) compounds
- Q2: An ionic bond is _____.
 - (a) a chemical bond between two ions with opposite charges
 - (b) a chemical bond between two ions with the same charge
 - (c) a chemical bond between two ions that repel each other
 - (d) a chemical bond between two cations
- Q3: True or False? In an ionic bond, the migration of electrons generates an electrical force that holds the atoms together.
- Q4: What does Coulomb's law help explain?
 - (a) How gravity affects atoms
 - (c) Why ions behave differently than atoms
- (b) Why some ions are electrically charged
- (d) Why some chemical reactions give off heat

Q5: Which of these factors is used to determine if a bond is ionic? (a) Electronegativity (b) Mass

(c) Bond polarity (d) Number of migrated electrons

Q6: True or False? Covalent bonds form between atoms of opposite electronegativities.

Q7: In compounds held together by covalent bonds, electrons _____.

- (a) are shared
 - (c) are removed

- (b) migrate from one atom to another
- (d) create unique electrical charges

Q8: When both electrons in a bonding pair come from one atom, the bond that forms is called _____.

(a) a weak bond

- (b) a polar covalent bond
- (c) an ionic bond (d) a coordinate covalent bond

Chemical Bonds

Q9: The type of bond that gives water its unique properties is _____

- (a) a resonance structure bond
- (c) an ionic bond

- (b) a polar covalent bond
- (d) a coordinate covalent bond

Q10: _____ are used for compounds that can be drawn more than one way (due to electron delocalization).

(a) Quantum diagrams

- (b) Resonance structures
- (c) Covalence-ionic bonds (d) Ionic-bonded salts

Q11: Substances with metallic bonds _____. (Choose all that apply.)

- (a) have higher conductivity than nonmetals
- (b) are usually denser than nonmetals
- (c) emit electrons when exposed to electromagnetic radiation
- (d) tend to fracture under pressure

Q12: Metals are made of tightly packed lattices of positively charged ion cores in a sea of freely moving, or _____, valence electrons.

(a) covalent	(b) resonating
(c) ionized	(d) delocalized

Q13: True or False? Pure metals are rare in nature — they usually occur as oxides or sulfides or are mixed with other compounds.

Q14:	What process can extract metals fro	m their ores?
	(a) Mining	(b) Firing
	(c) Stress heating	(d) Smelting

Q15:	Steel is an example of a(n)	
	(a) pure alloy	(b) substitutional alloy
	(c) interstitial alloy	(d) slip plane

Q16: Ionic bonds ____; covalent bonds ____; metallic bonds _____;

(a) are varied and complicated; tend to be simple and powerful; feature freely moving valence electrons

(b) tend to be simple and powerful; are varied and complicated; feature freely moving valence electrons

(c) feature freely moving valence electrons; tend to be simple and powerful; are varied and complicated

(d) feature freely moving valence electrons; are varied and complicated; tend to be simple and powerful

Q17: The attractive forces between molecules are called _____

- (a) covalent bonds
- (c) van der Waals forces

- (b) dipole-dipole bonds
- (d) Heisenberg forces

Q18: In a molecule, a pair of opposite electrical charges separated by distance is called _____.

- (a) a dipole-dipole bond
- (c) electronegativity

- (b) a dipole
- (d) polar covalent

Q19: When the positive end of one molecule aligns with the negative end of another, it produces a(n) _____, which holds the two molecules together.

- (a) strong lattice structure
- (c) electrical charge

(b) hydrogen bond

(d) van der Waals force

Q20: Hydrogen bonding occurs in _____.

(a) water

(c) DNA

(b) alcohols(d) All of the above

Answers

- Q1: The migration of an electron changes the nature of the atoms involved. Thus, they are no longer called atoms — instead, they are called _
 - (a) cations

(b) protons

(c) ions

(d) compounds

- A: (c) ions
- Q2: An ionic bond is _____.
 - (a) a chemical bond between two ions with opposite charges
 - (b) a chemical bond between two ions with the same charge
 - (c) a chemical bond between two ions that repel each other
 - (d) a chemical bond between two cations

A: (a) a chemical bond between two ions with opposite charges

Q3: True or False? In an ionic bond, the migration of electrons generates an electrical force that holds the atoms together.

A: True.

Q4: What does Coulomb's law help explain?

- (a) How gravity affects atoms
- (b) Why some ions are electrically charged
- (c) Why ions behave differently than atoms
- A: (c) Why ions behave differently than atoms
- (d) Why some chemical reactions give off heat
- Q5: Which of these factors is used to determine if a bond is ionic?
 - (a) Electronegativity

(c) Bond polarity

- (b) Mass
- (d) Number of migrated electrons

A: (a) Electronegativity

Q6: True or False? Covalent bonds form between atoms of opposite electronegativities. A: False (they form between atoms that have similar electronegativities).

- Q7: In compounds held together by covalent bonds, electrons _____.
 - (a) are shared
 - (c) are removed

- (b) migrate from one atom to another
- (d) create unique electrical charges

A: (a) are shared

Q8: When both electrons in a bonding pair come from one atom, the bond that forms is called _____.

- (a) a weak bond
- (c) an ionic bond

- (b) a polar covalent bond
- (d) a coordinate covalent bond

A: (d) a coordinate covalent bond

Q9: The type of bond that gives water its unique properties is _____

- (a) a resonance structure bond
- (c) an ionic bond

- (b) a polar covalent bond
- (d) a coordinate covalent bond

A: (b) a polar covalent bond

Q10: _____ are used for compounds that can be drawn more than one way (due to electron delocalization).

(a) Quantum diagrams

- (c) Covalence-ionic bonds
- A: (b) Resonance structures
- Q11: Substances with metallic bonds _____. (Choose all that apply.)
 - (a) have higher conductivity than nonmetals
 - (b) are usually denser than nonmetals
 - (c) emit electrons when exposed to electromagnetic radiation
 - (d) tend to fracture under pressure
- A: (a) have higher conductivity than nonmetals; (b) are usually denser than nonmetals; (c) emit electrons when exposed to electromagnetic radiation

Q12: Metals are made of tightly packed lattices of positively charged ion cores in a sea of freely moving, or _____, valence electrons.

(a) covalent	(b) resonating
(c) ionized	(d) delocalized

A: (d) delocalized

Q13: True or False? Pure metals are rare in nature — they usually occur as oxides or sulfides or are mixed with other compounds.

A: True.

Q14: What process can extract metals from their ores?

(a) Mining	(b) Firing
· · · · · ·	

(c) Stress heating (d) Smelting

A: (d) Smelting

- (b) Resonance structures
- (d) Ionic-bonded salts

Chemical Bonds

Q15: Steel is an example of a(n) _____. (a) pure alloy (c) interstitial alloy A: (c) interstitial alloy

(b) substitutional alloy (d) slip plane

Q16: Ionic bonds ____; covalent bonds ____; metallic bonds _

(a) are varied and complicated; tend to be simple and powerful; feature freely moving valence electrons

(b) tend to be simple and powerful; are varied and complicated; feature freely moving valence electrons

(c) feature freely moving valence electrons; tend to be simple and powerful; are varied and complicated

(d) feature freely moving valence electrons; are varied and complicated; tend to be simple and powerful

A: (b) tend to be simple and powerful; are varied and complicated; feature freely moving valence electrons

Q17: The attractive forces between molecules are called _ (a) covalent bonds (b) dipole-dipole bonds

(c) van der Waals forces

A: (c) van der Waals forces

(d) Heisenberg forces

Q18: In a molecule, a pair of opposite electrical charges separated by distance is called _____. (a) a dipole-dipole bond

(c) electronegativity

(b) a dipole

(d) polar covalent

A: (b) a dipole

Q19: When the positive end of one molecule aligns with the negative end of another, it produces a(n) _, which holds the two molecules together.

(a) strong lattice structure

(c) electrical charge

- (b) hydrogen bond
- (d) van der Waals force

A: (d) van der Waals force

Q20: Hydrogen bonding occurs in _____. (a) water (c) DNA A: (d) All of the above

(b) alcohols (d) All of the above

Chemical Reactions

Learning Objectives

After viewing this module, students will be able to:

- Define what a chemical reaction is and provide several examples
- Distinguish between a change of state and a chemical reaction
- Define and describe 'reactants' and 'products'
- Depict a basic equation for a chemical reaction
- Understand various chemical bonds and types of chemical reactions

Clips

Clip 1: Chemical Reactions

Topics include chemical equations, reactants, products, changes of state, diatomic elements, and the law of conservation of mass.

Clip 2: Chemical Bonding

Topics include subatomic particles, the octet rule, ions, and ionic and covalent bonds.

Clip 3: Types of Chemical Reactions

Topics include acids and bases, synthesis and decomposition reactions, single and double displacement reactions, exothermic and endothermic reactions, combustion reactions, and safety equipment.

Clip 4: Reaction Rates

Topics include moles, kinetic and activation energy, solutions, and chemical catalysts.

Clip 5: Reactions All Around Us

Topics include digestion, photosynthesis, autotrophs, chemosynthesis, patina, and luminol.

Quiz

- Q1: In a chemical reaction, the new substance(s) created, plus any ash, water vapor, or carbon dioxide, are called _____.
 - (a) products
 - (c) compounds

(b) reactants

- (d) resultants
- Q2: Changes of state involve a(n) _____ change, rather than a chemical one.
 - (a) endothermic (b) physical
 - (c) gaseous (d) biological

Q3: Diatomic elements _____.

- (a) contain two atoms of the same element, and are usually liquids
- (b) consist of two molecules joined to each other by chemical bonds
- (c) consist of chemicals joined by diatomic bonds
- (d) contain two atoms of the same element, joined by chemical bonds
- Q4: Because matter cannot be created or destroyed in a chemical reaction, the mass of all the reactants will always add up to the total mass of all the products. This is called _____.
 - (a) the law of conservation of mass
 - (b) the octet rule
 - (c) a chemical equation
- (d) the Heisenberg Certainty Principle

Q5: _____ are key players in chemical bonding, and move around in energy levels called shells or orbitals. a) Protons b) Octets c) Electrons d) Valences

Q6: A(n) _____ is when two atoms or more atoms share their electrons. Most molecules are made up of these. (a) ionic bond (b) covalent bond

(c) diatomic bond (d) metallic bond

Q7: A(n) _____ is when one atom gives up its electrons and the other atom receives those electrons. This usually occurs between a metal and a nonmetal.

(a) ionic bond	(b)	covalent	bond
----------------	-----	----------	------

(c) diatomic bond (d) metallic bond

(b) they have eight protons in their nucleus(c) they are found in the eighth row on the Period Table(d) they have eight electrons in their highest energy level	
Q9: Any reaction that gives off heat is called	
(a) endothermic (b) exothermic	
(c) combustible (d) catalytic	
Q10: reactions are chemical reactions that must absorb energy in order to occur. (a) Catalytic (b) Exothermic (c) Endothermic (d) Synthesis	
(c) Endomennie (d) Synthesis	
Q11. In what kind of reaction does one reactant break apart to form two or more products?(a) Single displacement(b) Double displacement(c) Synthesis(d) Decomposition	
Q12: A(n) yields a hydrogen ion when dissolved in water.	
(a) acid (b) hydrogen bond	
(c) base (d) oxide	
Q13: A(n) yields a hydroxide or an OH ion when dissolved in water. (a) acid (b) hydrogen bond (c) base (d) oxide	
Q14: In order for atoms, ions, or molecules to react, two conditions must be met: they must o contact with one another, and	come into
(c) they must have enough activation energy (d) they must have enough kinetic energ	у
Q15: When temperature increases, what happens to most chemical reactions?(a) They become combustible(b) They melt down(c) They speed up(d) They slow down	

Q16: A chemical that speeds up a chemical reaction without actually being involved in the reaction is called a(n) _____.

a) inhibitor	b) catal	lyst
c) rate of reaction	ď) enzy	me

Q17: ______ speed up chemical reactions by lowering the activation energy so that the reactions can occur at a lower temperature.

(a) Enzymes	(b) Coolants
(c) Acids	(d) Catalysts

Q18: True or False? Increasing the concentration of a solution increases the reaction rate because the particles collide with each other more often.

Q19: Which unit is used to measure the amount of product produced or reactant used up in a chemical reaction? (*Choose all that apply.*)

a) Gramsb) Kilogramsc) Molesd) All of the above

Q20: Which of these are involved with chemical reactions? (Choose all that apply.)

(a) Chemosynthesis

(c) Photosynthesis

- (b) Digestion
- (d) Autotrophs

Answers

- Q1: In a chemical reaction, the new substance(s) created, plus any ash, water vapor, or carbon dioxide, are called .
 - (a) products
 - (c) compounds

(b) reactants

A: (a) products

- (d) resultants
- Q2: Changes of state involve a(n) _____ change, rather than a chemical one. (a) endothermic (b) physical
 - (c) gaseous

- (d) biological

A: (b) physical

Q3: Diatomic elements _____.

- (a) contain two atoms of the same element, and are usually liquids
- (b) consist of two molecules joined to each other by chemical bonds
- (c) consist of chemicals joined by diatomic bonds
- (d) contain two atoms of the same element, joined by chemical bonds

A: (d) contain two atoms of the same element, joined by chemical bonds

Q4: Because matter cannot be created or destroyed in a chemical reaction, the mass of all the reactants will always add up to the total mass of all the products. This is called _____.

- (a) the law of conservation of mass
- (b) the octet rule

(c) a chemical equation

- (d) the Heisenberg Certainty Principle
- A: (a) the law of conservation of mass

Q5: _____ are key players in chemical bonding, and move around in energy levels called shells or orbitals.

a) Protons c) Electrons b) Octets d) Valences

A: (c) Electrons

Q6: A(n) is when two atoms or more atoms share their electrons. Most molecules are made up of these.

(a) ionic bond

(b) covalent bond

(c) diatomic bond

(d) metallic bond

A: (b) covalent bond

- Q7: A(n) _____ is when one atom gives up its electrons and the other atom receives those electrons. This usually occurs between a metal and a nonmetal.
 - (a) ionic bond

(b) covalent bond

(c) diatomic bond

(d) metallic bond

A: (a) ionic bond

Q8: In 1916, American chemist Gilbert Newton Lewis observed that elements are most stable when _____. His idea is called the octet rule.

- (a) they are grounded by equal charges
- (b) they have eight protons in their nucleus
- (c) they are found in the eighth row on the Period Table
- (d) they have eight electrons in their highest energy level
- A: (d) they have eight electrons in their highest energy level

Q9: Any reaction that gives off heat is called	
(a) endothermic	(b) exothermic
(c) combustible	(d) catalytic
A: (b) exothermic	

Q10: _____ reactions are chemical reactions that must absorb energy in order to occur.

- (a) Catalytic(b) Exothermic(c) Endothermic(d) Synthesis
- A: (c) Endothermic

Q11. In what kind of reaction does one reactant break apart to form two or more products?

- (a) Single displacement
- (c) Synthesis

composition

(b) Double displacement(d) Decomposition

A: (d) Decomposition

Q12: A(n) _____ yields a hydrogen ion when dissolved in water.

- (a) acid(b) hydrogen bond(c) base(d) oxide
- A: (a) acid

Q13: A(n) _____ yields a hydroxide or an OH ion when dissolved in water. (a) acid (b) hydrogen bond (c) base (d) oxide A: (c) base

(a) They become combustible	(b) They melt down
(c) They speed up	(d) They slow down
A: (c) They speed up	
Q16: A chemical that speeds up a chemical reaction is called a(n)	n without actually being involved in the reaction
a) inhibitor	b) catalyst
c) rate of reaction	d) enzyme
A: (b) catalyst	
Q17: speed up chemical reactions by lowering at a lower temperature.	ng the activation energy so that the reactions can occur
(a) Enzymes	(b) Coolants
(c) Acids	(d) Catalysts
A: (a) Enzymes	
Q18: True or False? Increasing the concentration of particles collide with each other more often.A: True.	f a solution increases the reaction rate because the
Q19: Which unit is used to measure the amount of reaction? (Choose all that apply.)	f product produced or reactant used up in a chemical
a) Grams	b) Kilograms
c) Moles	d) All of the above
A: (d) All of the above	
Q20: Which of these are involved with chemical re	actions? (Choose all that apply.)
(a) Chemosynthesis	(b) Digestion
(c) Photosynthesis	(d) Autotrophs
A: All of these are involved with chemical reactions.	

Q14: In order for atoms, ions, or molecules to react, two conditions must be met: they must come into contact with one another, and _

(a) they must conform to the octet rule

A: (d) they must have enough kinetic energy

(c) they must have enough activation energy (d) they must have enough kinetic energy

Q15: When temperature increases, what happens to most chemical reactions?

(b) they must have a catalyst

Chemical Reactions
ACIDS AND BASES

Learning Objectives

After viewing these clips, students will be able to:

- Identify the properties of acids and bases
- Understand dissociation
- Understand valence electrons and the octet rule of thumb
- Understand the pH scale, and name several acid-base indicators
- Explain strong and weak acids and bases, and how these are determined
- Identify several examples of acids and bases in the natural world and in manufactured products

Clips

Clip 1: Introduction to Acids and Bases

Topics include the properties of acids and bases, ionization and dissociation of acids and bases, valence electrons, the octet rule of thumb, and amphoteric substances.

Clip 2: Determining Acids and Bases

Topics include self-ionization of water, dynamic equilibrium, the pH scale, and acid-base indicators.

Clip 3: Acids and Bases in Chemistry

Topics include strong and weak acids and bases, reversible reactions, acid and base dissociation constants, and the neutralization reaction.

Clip 4: Acids and Bases in Our World

Topics include some places that acids and bases occur in the natural world, in the human body, and as chemically manufactured products; and acid rain.

Quiz

Q1: Most chemical substances are either an acid or a base.

Q2: If a substance tastes bitter and feels slippery, it is a(n) _____. (a) acid (b) base (c) soda (d) amphoteric substance

Q3: Ammonia, soap, and baking soda are all examples of _____. (a) acids (b) bases (c) acid-base indicators (d) salts

Q4: A substance is determined to be an acid or a base through _____, which occurs after the substance is dissolved in water; when acids do this, they give off a hydrogen ion, while bases accept a hydrogen ion.

(a) association(b) a litmus test(c) hydrogenation(d) dissociation

Q5: The octet rule, which has to do with atoms achieving a state of stability, helps explain why acids and bases may gain, lose, or share _____.

(a) valence electrons

(b) an eighth hydrogen bond

(c) a stabilizing inner shell

(d) eight electrons

Q6: When an acid is added to water that is in a state of _____, the number of hydronium ions in the water increases, and the number of hydroxide ions decreases (and vice versa if a base is added). This allows us to measure not only the presence of, but the strength of an acid or base.

- (a) self-ionization (b) flux
- (c) disassociation
-) dun ancia
- disassociation (d) dynamic equilibrium

Q7: What is pH?

- (a) The measure of a litmus strip
- (b) The measure of a substance's balance
- (c) The measure of a substance's acidity based on levels of hydrogen ion concentration
- (d) The measure of a substance's acidity based on its reaction with bases

Q8: When there's a lower concentration of hydrogen ions in a solution, its pH will be _____, and the substance more (a) lower; basic (b) lower; acidic (d) higher; acidic (c) higher; basic Q9: True or False? On a strip of litmus paper, the numbers from 0 to 6 and colors yellow through red indicate an acid; the numbers from 8 to 14 and blue/green colors indicate a base. Q10: On a strip of litmus paper, "neutral" is _____. (b) 14 (a) 0 (c) 5 (d) 7 Q11: Which of the following is NOT an acid-base indicator? (b) Phenolphthalein (a) Baking soda (c) A pH meter (d) A universal indicator Q12: Acids and bases that completely ionize (or dissociate) in water are called _____ (a) weak acids and bases (b) strong acids and bases (c) dissociative (d) neutral (or neutralized) Q13: The breakdown of any acid or base in water to form its ions is a(n) _____; this happens more often in in a weak acid or base than in a strong one. (a) reversible reaction (b) ionic reaction (c) neutralization reaction (d) double displacement reaction Q14: The symbols pKb represent the _____, which is the extent to which most bases will dissociate in water. (a) ionization factor constant (b) pH balance (c) universal indicator (d) base dissociation constant Q15: The strength of an acid or base is measured by _____. (a) its chemical formula (b) how much acid or base is in the solution relative to the amount of water it is dropped in (c) how it dissociates in water (d) how diluted it becomes in water

Q16: To make strong acids weaker requires a chemical reaction with _____. This is called a neutralization reaction.

(a) bases

(c) chlorine

- (b) neutrals
- (d) a double displacement reaction

Q17: What is the number one chemical produced worldwide? (a) Sodium chloride (b) Sodium hydroxide

(c) Sulfuric acid (d) Hydrochloric acid

Q18:	Acids and bases are used in which	of the following? (Choose all that apply)
	(a) fertilizers	(b) rust removers
	(c) cleaning solvents	(d) food and beverage flavorings

Q19: True or False? The human body uses acids and bases to regulate its blood pH levels.

- Q20: Acid rain results from chemical interactions with _____.
 - (a) auto and power plant emissions only
 - (b) emissions from autos, power plants, volcanoes, and decaying plants
 - (c) emissions from chemical factories only
 - (d) None of the above

Answers

Q1: Most chemical substances are either an acid or a base. *A: True.*

Q2: If a substance tastes bitter and feels slippery, it is a(n) _____.

(a) acid (c) soda (b) base (d) amphoteric substance

A: (b) base

Q3: Ammonia, soap, and baking soda	are all examples of
(a) acids	(b) bases
(c) acid-base indicators	(d) salts

A: (b) bases

Q4: A substance is determined to be an acid or a base through _____, which occurs after the substance is dissolved in water; when acids do this, they give off a hydrogen ion, while bases accept a hydrogen ion. (a) association (b) a litmus test

(c) hydrogenation

(b) a litmus test(d) dissociation

A: (d) dissociation

Q5: The octet rule, which has to do with atoms achieving a state of stability, helps explain why acids and bases may gain, lose, or share _____.

- (a) valence electrons
- (c) a stabilizing inner shell

- (b) an eighth hydrogen bond
- (d) eight electrons

A: (a) valence electrons

Q6: When an acid is added to water that is in a state of _____, the number of hydronium ions in the water increases, and the number of hydroxide ions decreases (and vice versa if a base is added). This allows us to measure not only the presence of, but the strength of an acid or base.

(a) self-ionization(c) disassociation

- (b) flux
- (d) dynamic equilibrium

A: (d) dynamic equilibrium

Q7: What is pH?

- (a) The measure of a litmus strip
- (b) The measure of a substance's balance
- (c) The measure of a substance's acidity based on levels of hydrogen ion concentration
- (d) The measure of a substance's acidity based on its reaction with bases
- A: (c) The measure of a substance's acidity based on levels of hydrogen ion concentration

Q8: When there's a lower concentration of hydrogen ions in a solution, its pH will be _____, and the substance more _____.
(a) lower; basic
(b) lower; acidic

- (c) higher; basic
- (b) lower; acidic(d) higher; acidic

A: (c) higher; basic

Q9: True or False? On a strip of litmus paper, the numbers from 0 to 6 and colors yellow through red indicate an acid; the numbers from 8 to 14 and blue/green colors indicate a base.

```
A: True.
```

Q10:	On a strip of litmus paper, "neutral" is	_•
	(a) 0	(b) 14
	(c) 5	(d) 7
A: (d)7	

Q11: Which of the following is NOT an	Which of the following is NOT an acid-base indicator?		
(a) Baking soda	(b) Phenolphthalein		
(c) A pH meter	(d) A universal indicator		
A: (a) Baking soda			

Q12: Acids and bases that completely ionize (or dissociate) in water are called _____. (a) weak acids and bases (b) strong acids and bases

- (c) dissociative (d) neutral (or neutralized)
- A: (b) strong acids and bases

Q13: The breakdown of any acid or base in water to form its ions is a(n) _____; this happens more often in in a weak acid or base than in a strong one.

- (a) reversible reaction
- (c) neutralization reaction

- (b) ionic reaction
- (d) double displacement reaction

A: (a) reversible reaction

Q18: Acids and bases are used in which of the following? (Choose all that apply) (a) fertilizers

- (c) cleaning solvents
- A: All of these are correct.

Q19: True or False? The human body uses acids and bases to regulate its blood pH levels. A: True.

Q20: Acid rain results from chemical interactions with _____.

- (a) auto and power plant emissions only
- (b) emissions from autos, power plants, volcanoes, and decaying plants
- (c) emissions from chemical factories only

(d) None of the above

A: (b) emissions from autos, power plants, volcanoes, and decaying plants

Q14: The symbols pKb represent the _____, which is the extent to which most bases will dissociate in water.

- (a) ionization factor constant
- (c) universal indicator

A: (d) base dissociation constant

- Q15: The strength of an acid or base is measured by _____
 - (a) its chemical formula
 - (b) how much acid or base is in the solution relative to the amount of water it is dropped in
 - (c) how it dissociates in water
 - (d) how diluted it becomes in water
- A: (c) how it dissociates in water

(c) chlorine

(c) Sulfuric acid

A: (c) Sulfuric acid (used in auto batteries)

Q16: To make strong acids weaker requires a chemical reaction with _____. This is called a neutralization reaction.

- (a) bases (b) neutrals
 - (d) a double displacement reaction

- A: (a) bases
- Q17: What is the number one chemical produced worldwide?
 - (a) Sodium chloride (b) Sodium hydroxide
 - (d) Hydrochloric acid
 - (b) rust removers
 - (d) food and beverage flavorings

(b) pH balance (d) base dissociation constant

Metals

Learning Objectives

After viewing this module, students will be able to:

- Describe how metals play a role in many areas of everyday life
- Distinguish between alkali, alkaline earth, and transition metals
- Describe individual elements in each metal group
- Explain chemical reactions involving metals
- Define compounds and alloys

Clips

Clip 1: Metals in Our World

Topics include some properties of metals, and uses for potassium, sodium, lithium, iron, uranium, silver, zinc, mercury, and magnesium.

Clip 2: Alkali Metals

Topics include the history of alkali metals, some of their properties, and ways in which alkali metals are used in the environment, technology, and health and medicine.

Clip 3: Alkaline Earth Metals

Topics include the history of alkaline earth metals, some of their properties, and ways in which alkali metals are used in medicine and industry, and for everyday use.

Clip 4: Transition Metals

Topics include some properties of the transition metals, and uses for cobalt, nickel, copper, silver, gold, zinc, cadmium, and mercury.

Clip 5: Metals and Chemical Reactions

Topics include endothermic and exothermic reactions, oxidation, combustion, and acids and bases.

Quiz

Q1: On the Periodic Table, ____% of the elements are classified as metals. (a) 25 (b) 50 (c) 75 (d) 90

- Q2: True or False? Because metals are so reactive, they are only found in compounds when found in nature.
- Q3: Sodium is present in the well-known compound sodium chloride, or salt. More than half of the salt produced annually is used _____.
 - (a) by the food industry as an ingredient in convenience foods
 - (b) by chemical industries to make other compounds
 - (c) as common table salt
 - (d) in pesticides

Q4:	has more us	ses and applications	than any other metal.
	(a) Zinc		(b) Silver
	(c) Mercury		(d) Iron

Q5: The alkali metals are _____, and this property increases with their atomic number.

- (a) highly reactive (b) low in reactivity
- (c) radioactive (d) prone to oxidation

Q6: Which alkali metal is used both in batteries, and as treatment for mood disorders?

- (a) Nickel (b) Cadmium
- (c) Lithium

(d) Silver nitrate

Q7: Cesium is very useful for firefighters because _____.

- (a) it acts as a salve for burns
- (b) pouring it onto burning substances helps reduce the flames
- (c) it functions as a natural flame retardant, so is used in the manufacture of their uniforms
- (d) pouring carbon dioxide on it releases oxygen, so they have breathable air despite the presence of toxic fumes

Q8: On the Periodic Table, alkali metals are			
(a) Group 1 (the first vertical column)	(b) Row 1 (the first vertical column)		
(c) Group 1 (the first row)	(d) grouped withe the actinoids		
Q9: Which alkaline earth metal helps ensure that th	e body's enzymes function correctly?		
(a) Calcium	(b) Magnesium		
(c) Strontium	(d)Barium		
Q10: discovered many alkali and alkaline ear	th metals, such as potassium, sodium,		
calcium, and barium.	(b) Pohort Burgon		
(a) Nikola Teda	(d) Humphrey Davy		
(C) INIKOIA ICSIA	(d) Humphrey Davy		
O11. Like most metale, the alkaling earth metale or	a ductila which means		
(a) they are shiny	(b) they are malleable		
(a) they are shirty	(d) they can be made to float in water		
(c) they can be thinly hannifered	(d) they can be made to noat in water		
012. Along with the discovery of the electron and	the Theory of Relativity, the discovery of in		
1898 marked the beginning of the modern er	a of science		
(a) radium	(b) strontium		
(c) barium	(d) uranium		
Q13: The transition metals are			
(a) more reactive than the alkali and alkaline	earth metals		
(b) more stable than the alkali and alkaline earth metals			
(c) rarely found in nature in their pure form			
(d) a bridge between the alkali and alkaline e	arth metals		
Q14: Of all the metals, which is the best conductor	of heat and electricity?		
(a) Copper	(b) Nickel		
(c) Silver	(d) Zinc		
	、 、		
Q15: Of all the metals, which is the most malleable $(1) = 11$			
(a) Gold	(b) Silver		
(c) Copper	(d) Zinc		

Q16: True or False? One of the unusual properties of mercury is its ability to dissolve other metals.

Q17:	Chemical reactions that give off energy are call	led reactions.
	(a) endothermic	(b) exothermic
	(c) combustible	(d) acidic
018	Most chemical reactions are meaning t	hey require an input of energy to cause the reaction
Q10.	(a) endothermic	(b) evolute an input of energy to cause the reaction.
	(c) energetic	(d) basic
Q19:	Many metals are highly reactive with air and w	vater, hence they are vulnerable to
	(a) inflammation	(b) endothermic reactions
	(c) combustion	(d) oxidation

Q20: When a metal with greater reactivity than hydrogen comes into contact with an acid, the atoms from the metal replace the acid's hydrogen atoms. The hydrogen is released as a gas, and the the solution that remains is _____.

(a) a base	(b) a salt
(c) an ion	(d) neutral

Answers

Q1: On the Periodic Table, _____% of the elements are classified as metals. (a) 25 (b) 50 (c) 75 (d) 90 A: (c) 75

Q2: True or False? Because metals are so reactive, they are only found in compounds when found in nature. A: False. Some metals are found in their pure forms, while the very reactive metals exist in nature only in compounds.

- Q3: Sodium is present in the well-known compound sodium chloride, or salt. More than half of the salt produced annually is used _____.
 - (a) by the food industry as an ingredient in convenience foods
 - (b) by chemical industries to make other compounds
 - (c) as common table salt
 - (d) in pesticides
- A: (b) by chemical industries to make other compounds

Q4:	: has more uses and applica	tions than any other metal.
	(a) Zinc	(b) Silver
	(c) Mercury	(d) Iron

<i>A:</i>	(d)	Iron
-----------	-----	------

Q5: The alkali metals are	, and this proper	rty increases with	their atomic nu	ımber
---------------------------	-------------------	--------------------	-----------------	-------

- (a) highly reactive (b) low in reactivity (c) radioactive

- (d) prone to oxidation

A: (a) highly reactive

Q6: Which alkali metal is used both in batteries, and as treatment for mood disorders?

- (a) Nickel (b) Cadmium (c) Lithium
- A: (c) Lithium

(d) Silver nitrate

- Q7: Cesium is very useful for firefighters because _____.
 - (a) it acts as a salve for burns
 - (b) pouring it onto burning substances helps reduce the flames
 - (c) it functions as a natural flame retardant, so is used in the manufacture of their uniforms
 - (d) pouring carbon dioxide on it releases oxygen, so they have breathable air despite the presence of toxic fumes

- Q8: On the Periodic Table, alkali metals are _____.
 - (a) Group 1 (the first vertical column)
 - (b) Row 1 (the first vertical column)
 - (c) Group 1 (the first row)
 - (d) grouped withe the actinoids
- A: (a) Group 1 (the first vertical column)

Q9: Which alkaline earth metal helps ensure that the body's enzymes function correctly?

- (a) Calcium (b) Magnesium (d)Barium
- (c) Strontium
- A: (b) Magnesium

Q10: _____ discovered many alkali and alkaline earth metals, such as potassium, sodium, calcium, and barium.

- (b) Robert Bunsen (a) Marie Curie (c) Nikola Tesla (d) Humphrey Davy
- A: (d) Humphrey Davy

Q11: Like most metals, the alkaline earth metals are ductile, which means (a) they are shiny (b) they are malleable (c) they can be thinly hammered (d) they can be made to float in water A: (c) they can be thinly hammered

- Q12: Along with the discovery of the electron, and the Theory of Relativity, the discovery of _____ in 1898 marked the beginning of the modern era of science.
 - (a) radium (c) barium
- (b) strontium (d) uranium

A: (a) radium

A: (d) pouring carbon dioxide on it releases oxygen, so they have breathable air despite the presence of toxic fumes

Q13: A: (b)	 Q13: The transition metals are (a) more reactive than the alkali and alkaline earth metals (b) more stable than the alkali and alkaline earth metals (c) rarely found in nature in their pure form (d) a bridge between the alkali and alkaline earth metals A: (b) more stable than the alkali and alkaline earth metals 				
Q14: <i>A: (c)</i>	Of all the metals, whic (a) Copper) <i>Silver</i>	h is the best conductor (b) Nickel	of heat and electricity? (c) Silver	(d) Zinc	
Q15: A: (a)	Of all the metals, whic (a) Gold) <i>Gold</i>	h is the most malleable (b) Silver	c) Copper	(d) Zinc	
Q16: <i>A: Tr</i>	True or False? One of t rue.	he unusual properties o	f mercury is its ability to dissol	ve other metals.	
Q17: A: (b)	Chemical reactions tha (a) endothermic) <i>exothermic</i>	t give off energy are cal (b) exothermic	led reactions. (c) combustible	(d) acidic	
Q18: A: (a)	Most chemical reaction (a) endothermic) <i>endothermic</i>	as are, meaning t (b) exothermic	hey require an input of energy (c) energetic	to cause the reaction. (d) basic	
Q19: A: (d	Many metals are highly (a) inflammation (c) combustion <i>) oxidation</i>	<i>r</i> reactive with air and v	vater, hence they are vulnerable (b) endothermic reactions (d) oxidation	to	
Q20:	When a metal with gree the metal replace the activity that remains is	ater reactivity than hyd cid's hydrogen atoms. T	rogen comes into contact with 'he hydrogen is released as a gas	an acid, the atoms from s, and the the solution	
A: (b	(a) a base) <i>a salt</i>	(b) a salt	(c) an ion	(d) neutral	

Metals

BIOCHEMISTRY

Learning Objectives

After viewing these clips, students will be able to:

- Define and describe amino acids, proteins, and nucleic acids, and explain how they contribute to making life possible
- Define and describe enzymes, lipids, and biological membranes, and explain how they contribute to making life possible
- Define carbohydrates and metabolic pathways, and explain how they contribute to the generation of energy
- Define the Krebs Cycle and explain its role as a metabolic pathway

Clips

Clip 1: Amino Acids

Topics include peptides, polypeptides, peptide bonds, amino groups, carboxylic acid groups, side chains (R groups), alpha carbons, and alpha amino acids.

Clip 2: Proteins and Nucleic Acids

Topics include the four protein structures, protein sequencing, nucleotides, and DNA and RNA.

Clip 3: Enzymes

Topics include substrates, the active site, the ES complex, products, factors affecting enzyme reactions, enzyme specificity, and how DNA is used for forensic analysis

Clip 4: Lipids and Biological Membranes

Topics include trigylcerides, fatty acids, saturated and unsaturated fats, phospholipids and lipid bilayers, steroids, and cholesterol.

Clip 5: Carbohydrates

Topics include monosaccharides (glucose, fructose, galactose), disaccharides (sucrose), and polysaccharides (starch, cellulose, glycogen, chitin, peptin, heparin).

Clip 6: Metabolic Pathways

Topics include catabolism and anabolism, ATP, cellular respiration, aerobic respiration, the aerobic pathway (glycolysis, the Krebs Cycle, and the electron transport chain).

Quiz

Q1: Amino acids are the building blocks of _____, and are present in all living organisms.(a) proteins(b) carbohydrates(c) lipids(d) oxygen

Q2: Amino acids are linked together via	
(a) DNA strands	(b) fatty lipids
(c) hydrogen bonds	(d) chains called peptides

Q3: There are 20 or so _____. These are special to biochemistry because they play a role in biomolecules that are involved in _____.

(a) amino acids; storing genetic information (b) alpha carbons; r groups

(c) alpha amino acids; nutrition (d) side chains; nutrition

Q4: True or False? The human body makes about 50,000 different proteins, each with a primary, secondary, and tertiary structure, and each with a specific function.

Q5: The information the body requires in order to produce different proteins is contained in large molecules called _____.

(a) nucleotides	(b) nucleic acids
(c) enzymes	(d) RNA

Q6: Each _____ contains millions of _____, such as DNA and RNA.(a) nucleic acid; nucleotides(b) nucleotide; nucleic acids(c) nucleic acid; proteins(d) nucleotide; proteins

Q7: _____ are proteins that increase the speed of complex reactions in living organisms by a million times or more, making life possible.

(a) Mitochondria	(b) Lysozymes
(c) Enzymes	(d) Glucides

Q8: There are about 40,000 enzymes in human cells, each controlling _____.

(a) a different bodily process

(c) a substrate

(b) its own group of chemical reactions

(d) a different chemical reaction

Biochemistry

53

Q9: A number of factors affect enzyme reactions, including _____. (Choose all that apply) (b) acidity (a) temperature (c) concentrations of enzymes and substrates (d) enzyme effectors Q10: While there are many different kinds of lipids, they all share one property — _____. (a) having a high glycemic index (b) sensitivity to light (c) being insoluble in water (d) being heat resistant Q11: Fats are found in the body in the form of _____. (b) lipids (a) triglycerides (c) steroids (d) phospholipids Q12: _____ are an important class of lipids that typically occur as hormones, controlling the action of certain cells and organs. (a) Triglycerides (b) Steroids (c) Phospholipids (d) Enzymes Q13: Cholesterol, a waxy fatty substance found in all body cells, _____. (a) regulates the distribution of saturated and unsaturated fats in the body (b) is a type of steroid that sends messages of 'fullness' to the brain while eating (c) occurs in the body due to a diet high in unsaturated fats (d) acts as part of the cell membrane while helping to make hormones Q14: Most carbohydrates in food are broken down into _____ in the course of digestion, making them a major energy source for living organisms. (a) polysaccharides (b) starch (c) ATP (d) glucose Q15: Monosaccharides (e.g., glucose, fructose, honey), disaccharides (e.g., table sugar), and polysaccharides (e.g., starch, cellulose) are all types of _____. (b) carbohydrates (a) simple sugars (d) saccharides (c) complex starches Q16: Plants store food in the form of starch, which is made up of _____. (a) glucose molecules (b) cellulose (c) chitin (d) pectins Essential Chemistry: Core Concepts Video Clip Library @ 2010 Films for the Humanities & Sciences* • An imprint of Infobase Publishing

Q17: The cell walls in plants are made of a carbohydrate called _____.

- (b) cellulose
- (c) starch (d) pectin

Q18: All metabolic reactions are complex, multistep processes each controlled by specific enzymes that produce particular substances. These multistep processes are called _____.

(a) metabolic pathways

(a) glycogen

- (b) catabolic reactions
- (c) metabolic lifecycles (d) enzymatic pathways

Q19: The two types of metabolic reaction are _____ (breaking down molecules to release energy, such as in digestion) and _____ (using energy to create larger molecules from smaller ones).

- (a) inverse; converse
- (b) anabolic; catabolic
- (c) catabolic; anabolic (d) endothermic; exothermic

Q20: _____ is a metabolic pathway that results in energy for the body's cells by breaking glucose down into ATP.

- (a) Cellular respiration
- (c) The Krebs Cycle

- (b) Aerobic respiration
- (d) Glycolysis

Answers

Q1: Amino acids are the building blocks of	, and are present in all living organisms.
(a) proteins	(b) carbohydrates
(c) lipids	(d) oxygen
A: (a) proteins	
-	
Q2: Amino acids are linked together via	
(a) DNA strands	(b) fatty lipids
(c) hydrogen bonds	(d) chains called peptides
A: (d) chains called peptides	
Q3: There are 20 or so These are special to	o biochemistry because they play a role in biomolecules

(a) amino acids; storing genetic information (b) alpha carbons; r groups

(c) alpha amino acids; nutrition (d) side chains; nutrition

A: (c) alpha amino acids; nutrition

Q4: The human body makes about 50,000 different proteins, each with a primary, secondary, and tertiary structure, and each with a specific function.

A: True.

Q5: The information the body requires in order to produce different proteins is contained in large molecules called _____.

(a) nucleotides	(b) nucleic acids
(c) enzymes	(d) RNA

A: (b) nucleic acids

Q6: Each _____ contains millions of _____, such as DNA and RNA. (a) nucleic acid; nucleotides (b) nucleotide; nucleic acids (c) nucleic acid; proteins

(d) nucleotide; proteins

A: (a) nucleic acid; nucleotides

Q7: _____ are proteins that increase the speed of complex reactions in living organisms by a million times or more, making life possible.

(a) Mitochondria	(b) Lysozymes
(c) Enzymes	(d) Glucides

A: (c) Enzymes

Q8: There are about 40,000 enzymes in human cells, each controlling _ (a) a different bodily process (b) its own group of chemical reactions (c) a substrate (d) a different chemical reaction A: (d) a different chemical reaction Q9: A number of factors affect enzyme reactions, including _ ____. (Choose all that apply) (a) temperature (b) acidity (c) concentrations of enzymes and substrates (d) enzyme effectors A: All of these factors affect enzyme reactions Q10: While there are many different kinds of lipids, they all share one property — _ (a) having a high glycemic index (b) sensitivity to light (c) being insoluble in water (d) being heat resistant A: (c) being insoluble in water Q11: Fats are found in the body in the form of _____ (a) triglycerides (b) lipids (c) steroids (d) phospholipids A: (a) triglycerides

Q12: _____ are an important class of lipids that typically occur as hormones, controlling the action of certain cells and organs.

- (a) Triglycerides
- (b) Steroids
- (c) Phospholipids
- (d) Enzymes
- A: (b) Steroids

Q13: Cholesterol, a waxy fatty substance found in all body cells, _____

- (a) regulates the distribution of saturated and unsaturated fats in the body
- (b) is a type of steroid that sends messages of 'fullness' to the brain while eating
- (c) occurs in the body due to a diet high in unsaturated fats
- (d) acts as part of the cell membrane while helping to make hormones

A: (d) acts as part of a cell membrane while helping to make hormones

Q14: Most carbohydrates in food are broken down into _____ in the course of digestion, making them a major energy source for living organisms. (a) polysaccharides (b) starch (c) ATP (d) glucose A: (d) glucose Q15: Monosaccharides (e.g., glucose, fructose, honey), disaccharides (e.g., table sugar), and polysaccharides (e.g., starch, cellulose) are all types of _____. (b) carbohydrates (a) simple sugars (c) complex starches (d) saccharides A: (b) carbohydrates Q16: Plants store food in the form of starch, which is made up of _____ (b) cellulose (a) glucose molecules (c) chitin (d) pectins A: (a) glucose molecules Q17: The cell walls in plants are made of a carbohydrate called _____ (b) cellulose (a) glycogen (c) starch (d) pectin A: (b) cellulose Q18: All metabolic reactions are complex, multistep processes each controlled by specific enzymes that produce particular substances. These multistep processes are called . (a) metabolic pathways (b) catabolic reactions (c) metabolic lifecycles (d) enzymatic pathways A: (a) metabolic pathways Q19: The two types of metabolic reaction are _____ (breaking down molecules to release energy, such _____ (using energy to create larger molecules from smaller ones). as in digestion) and _ (a) inverse; converse (b) anabolic; catabolic (c) catabolic; anabolic (d) endothermic; exothermic A: (c) catabolic; anabolic Q20: _____ is a metabolic pathway that results in energy for the body's cells by breaking glucose down into ATP. (a) Cellular respiration (b) Aerobic respiration (c) The Krebs Cycle (d) Glycolysis A: (c) The Krebs Cycle

STATES OF MATTER

Learning Objectives

After viewing this module, students will be able to:

- Describe the three common states of matter: solids, liquids, and gases
- Understand the processes of evaporation and condensation
- Understand the processes of melting and freezing
- Understand the processes of sublimation and deposition
- Demonstrate knowledge of other states of matter beyond solids, liquids, and gases

Clips

Clip 1: Solids, Liquids, and Gases

Topics include the molecular properties of solids, liquids, and gases; intermolecular forces, and the Ideal Gas Law.

Clip 2: Evaporation and Condensation

Topics include the mechanics of evaporation and condensation, and the factors affecting these.

Clip 3: Melting and Freezing

Topics include the mechanics of melting and freezing, and ionic and covalent bonds.

Clip 4: Sublimation and Deposition

Topics include the processes by which matter changes directly between the sold and gaseous states.

Clip 5: Other States of Matter

Topics include plasma, liquid crystals, Bose-Einstein condensates, superfluids, and supersolids.

Quiz

Q1: 7	The most	common	state	of m	atter i	n the	universe	is	
-------	----------	--------	-------	------	---------	-------	----------	----	--

(a) gases(b) liquids(c) solids(d) plasmas

Q2: Which state of matter has molecules loosely bonded together and taking on the shape

of the container into which it is place?	_
(a) Solid	(b) Liquid
(c) Gas	(d) Plasma

Q3: In solids made up on only one element, the atoms are of equal size. This results in what chemists call

(a) uniformity(b) tight-knit structure(c) close-packed structure(d) a lattice structure

Q4: Which of the following is NOT an intermolecular force?

(a) dispersion forces(b) dipole-dipole forces(c) dipole-anapole forces(d) hydrogen bonds

Q5: Three factors determine the movements of atoms or molecules in a gas: temperature, pressure, and _____.

(a) hun	nidity	(b) concentration
(c) mas	S	(d) volume

Q6: Which of the following equations represents the ideal gas law? (a) G = PTn (b) PV = nRT (c) N = VPG (d) P = nT2

Q7: The process by which gas converts	to a liquid is called
(a) condensation	(b) evaporation
(c) melting	(d) transvaporation

- Q8: When the kinetic energy of a molecule is great enough to overcome the molecular force holding it to other molecules in a liquid state, the state of matter changes from a liquid to a _____.
 - (a) solid (b) more viscous liquid (c) molecule (d) gas

Q9: The temperature at which liquid becomes a gas is called _____

- (a) the boiling point (b) the ideal gas law
- (c) the melting point

(d) the dew point

Q10: True or False? Two factors involved in evaporation and condensation are intermolecular forces, and air pressure

Q11: Which process creates fog?	
(a) condensation	(b) evaporation
(c) melting	(d) transvaporation

Q12: How fast or slow the particles that make up a solid vibrate depends on the amount of energy they contain. That energy is measured in terms of _____.

(a) thermodynamics	(b) speed
(c) velocity	(d) temperature

Q13: The temperature at which a solid becomes a liquid is known as its melting point. The freezing point of a solid is _____.

- (a) inversely proportionate to its melting point
- (b) lower by varying degrees than its melting point
- (c) sometimes higher than its melting point
- (d) the same as the melting point

Q14: Forces created when electrons are gained or lost are called _____.

- (a) ionic bonds (b) covalent bonds
- (c) anionic bonds (d) cationic bonds

Q15: A _____ bond occurs when two atoms, both in need of electrons to become stable, share electrons. (a) ionic (b) covalent (c) anionic (d) cationic Q16: _____ occurs when a solid changes directly into a gas (the liquid state of matter is skipped).

- (a) Condensation
- (c) Deposition

- (b) Sublimation
- (d) Melting

Q17: _____ occurs when a gas changes directly into a solid (e.g., frost).

- (a) Condensation (b) Sublimation
- (c) Deposition (d) Freezing

Q18: Sublimation and deposition phase changes occur when the effects of temperature are combined with _____.

(a) mass

(b) kinetic energy

(c) pressure

(d) activation energy

Q19: _____ is/are something between a liquid and a solid; its molecules are arranged in a structured pattern, but are still able to flow and move like liquids.

(a) Liquid crystals	(b) Plasma
(b) Superliquids	(d) Supersolids

Q20: At the molecular level, _____ have more energy than any other state of matter.

- (a) plasmas
- (c) liquids

(b) solids(d) gases

Answers

Q1:	The most common	state of	matter	in	the	universe	is		
	(a) gases					(1	b) l	liquids	5

(c) solids (d) plasmas

A: (d) plasmas

Q2: Which state of matter has molecules loosely bonded together and taking on the shape of the container into which it is place?

(a) Solid	(b) Liquid
(c) Gas	(d) Plasma

A: (b) Liquid

Q3: In solids made up on only one element, the atoms are of equal size. This results in what chemists call

(a) uniformity	(b) tight-knit structure
(c) close-packed structure	(d) a lattice structure

A:	(c)	close-	packed	structure
	(-/			

Q4:	Which of the following is NO	T an intermolecular force?
	(a) dispersion forces	(b) dipole-o

(c) dipole-anapole forces

(b) dipole-dipole forces

A: (c) dipole-anapole forces

- (d) hydrogen bonds
- Q5: Three factors determine the movements of atoms or molecules in a gas: temperature, pressure, and _____.

(a) humidity	(b) concentration
(c) mass	(d) volume
A: (d) volume	

Q6:	Which of the following	equations represents	the ideal gas law?
	(a) $G = PTn$		(b) $PV = nRT$
	(c) $N = VPG$		(d) $P = nT2$
A: ((b) $PV = nRT$		

Q7: The process by which gas converts to a liquid is called _____

- (a) condensation
- (c) melting

- (b) evaporation
- (d) transvaporation

A: (a) condensation

Q8: When the kinetic energy of a molecule is great enough to overcome the molecular force holding it to other molecules in a liquid state, the state of matter changes from a liquid to a _____.

- (a) solid (b) more viscous liquid
- (c) molecule

(d) gas

(d) the dew point

A: (d) gas

Q9: The temperature at which liquid becomes a gas is called _____.(a) the boiling point (b) the ideal gas law

- (c) the melting point
- A: (c) the boiling point

Q10: True or False? Two factors involved in evaporation and condensation are intermolecular forces, and air pressure

A: True.

- Q11: Which process creates fog?(a) condensation(c) melting(d) transvaporation
- A: (a) condensation

Q12: How fast or slow the particles that make up a solid vibrate depends on the amount of energy they contain. That energy is measured in terms of _____.

- (a) thermodynamics(b) speed(c) velocity(d) temperature
- A: (d) temperature

Q13: The temperature at which a solid becomes a liquid is known as its melting point. The freezing point of a solid is _____.

- (a) inversely proportionate to its melting point
- (b) lower by varying degrees than its melting point
- (c) sometimes higher than its melting point
- (d) the same as the melting point
- A: (d) the same as the melting point

Q14: Forces created when electrons are gained or lost are called _____.

- (a) ionic bonds
- (c) anionic bonds

- (b) covalent bonds
- (d) cationic bonds

(b) covalent

A: (a) ionic bonds

Q15: A _____ bond occurs when two atoms, both in need of electrons to become stable, share electrons.

- (a) ionic
- (c) anionic (d) cationic
- A: (b) covalent

Q16: _____ occurs when a solid changes directly into a gas (the liquid state of matter is skipped).

- (a) Condensation
 - (c) Deposition
- A: (b) Sublimation

Q17:		occurs	when a	gas	changes	directly	into	a so	olid	(e.g.,	frost).	
	() ~							14				

(a) Condensation(c) Deposition

(b) Sublimation(d) Freezing

(b) Sublimation

(d) Melting

(d)

A: (c) Deposition

Q18: Sublimation and deposition phase changes occur when the effects of temperature are combined with _____.

- (a) mass
- (c) pressure

(b) kinetic energy(d) activation energy

A: (c) pressure

Q19: _____ is/are something between a liquid and a solid; its molecules are arranged in a structured pattern, but are still able to flow and move like liquids.
 (a) Liquid crystals
 (b) Plasma

- (b) Superliquids (d) Supersolids
- A: (a) Liquid crystals
- Q20: At the molecular level, _____ have more energy than any other state of matter. (a) plasmas (b) solids (c) liquids (d) gases
- A: (a) plasmas

EARTH CHEMISTRY

Learning Objectives

After viewing these clips, students will be able to:

- Discuss the chemical composition of the atmosphere, hydrosphere, and lithosphere
- Understand how the atmosphere makes life on earth possible
- Define greenhouse gases, the greenhouse effect, the ozone layer, and air pollution
- Discuss the unique properties of water's chemical formula
- Identify different types of weathering

Clips

Clip 1: Chemical Processes in the Atmosphere

Topics include the chemical composition of the atmosphere, the atmosphere's role in life on earth, trace (greenhouse) gases, the greenhouse effect, fossil fuels, the ozone layer, air pollution, and acid rain.

Clip 2: Chemical and Physical Processes in the Hydrosphere

Topics include the forms that water takes above, on, and below the earth, the unique properties of water's chemical formula (including polarity), water as a universal solvent, salinity, and water pollution.

Clip 3: Chemical Processes in the Lithosphere

Topics include the chemical composition of the lithosphere, types of physical weathering and its results, and types of chemical weathering and its results.

Quiz

- Q1: The atmosphere _____. (*Choose all that apply.*) (a) contains oxygen that is critical for both animals' and plants' respiration (b) contains oxygen that is critical for animals' respiration (c) contains carbon dioxide that plants use to make food molecules (d) contains nitrogen that provides nutrients to plants for making food (e) keeps most of the planet's water warm enough to remain liquid (hence, oceans) Q2: The atmosphere is primarily made up of _____. (b) water vapor and oxygen (a) oxygen and hydrogen (c) oxygen and carbon dioxide (d) nitrogen and oxygen Q3: The _____ is the layer of the atmosphere closest to Earth's surface. (a) lithosphere (b) troposphere (c) mesosphere (d) stratosphere Q4: Trace gases, also called greenhouse gases, _____. (a) are a direct result of human activity (b) allow the atmosphere to heat up or cool down (c) are of interest to scientists as a potential source of energy (d) allow the atmosphere to absorb heat, making life on earth possible
- Q5: When fossil fuels are burned, it results in excess carbon dioxide in the atmosphere, _____ and raising Earth's temperature with potentially drastic consequences.
 - (a) reducing the greenhouse effect
 - (c) enhancing the greenhouse effect
- (b) decreasing nitrogen in the troposphere
 - (d) increasing nitrogen in the troposphere
- Q6: The ozone layer is important because _____.
 - (a) ozone molecules absorb ultraviolet radiation from the sun that can harm plants and animals
 - (b) ozone molecules absorb ultraviolet radiation from the sun that can harm all animal life, including humans
 - (c) it absorbs excess greenhouse gases that are raising Earth's temperature
 - (d) it serves as a protective barrier between the troposphere and greenhouse gases

Q7: The hydrosphere includes _____. (*Choose all that apply.*)

- (a) all water above, on, and below the earth
- (b) water in all its forms within the atmosphere, such as clouds
- (c) snow and ice, but not permafrost
- (d) gaseous water

Q8:	What percent of Earth if covered by water?	
	(a) 40%	(b) 50%
	(c) 70%	(d) nearly 90%

(a) 18%	(b) 28%
(c) 54%	(d) 97%

Q10: True or False? Most of Earth's water is locked up as snow, ice, and permafrost.

Q11: Water's chemical formula gives it several unique properties, such as _____.

- (a) polarity (which helps to make water a universal solvent)
- (b) extreme sensitivity to temperature changes
- (c) polarity (which makes water molecules repel each other)
- (d) salinity

Q12: Most water pollutants takes part in chemical reactions. Being _____ means that pollutants rely on microbes to break matter up into smaller units.

- (a) degradable (b) biodegradable
- (c) organic

(d) oxi-degradable

Q13: The lithosphere includes _____.

- (a) the Earth's core, crust, and upper mantle
- (b) the Earth's crust and upper mantle (including tectonic plates)
- (c) the Earth's crust and upper mantle (excluding tectonic plates)

(d) the rocky portions of Earth directly below the mesosphere

Q14: True or False? The "oceanic crust" is also part of the lithosphere.

Q15: Weathering is the breakdown of _____ through a variety of processes.

- (a) rock
 - (c) biomaterials

(b) organic and inorganic materials

(d) rocks, plants, and remains of animals

Q16: Soil results due to the breakdown of _____.

- (a) weathering
- (c) oxides

(b) regolith

(d) limestone

Q17: At what point are broken rock and mineral fragments considered to be soil?

- (a) When plants are able to send roots down into the fragments to extract nutrients
- (b) When the minerals have been entirely depleted from the rock fragments
- (c) When the fragments measure less than one micron across
- (d) When microbes and small insects begin to inhabit the fragments
- Q18: There are two types of weathering: _____.
 - (a) organic and inorganic
 - (c) physical and ionic exchange

(b) organic and chemical

(d) physical and chemical

Q19: Freezing of water, formation of crystals, penetration by plant roots, and abrasion are all examples of _____.

(a) physical weathering

(c) the lithosphere

- (b) organic weathering (d) chemical motion
- Q20: Oxidation and dissolution are examples of____
 - (a) rusting
 - (c) ion exchange

- (b) chemical weathering
- (d) biodegradability

Earth Chemistry

Answers

Q1: The atmosphere _____. (Choose all that apply.)

(a) contains oxygen that is critical for both animals' and plants' respiration

(b) contains oxygen that is critical for animals' respiration

(c) contains carbon dioxide that plants use to make food molecules

(d) contains nitrogen that provides nutrients to plants for making food

(e) keeps most of the planet's water warm enough to remain liquid (hence, oceans)

A: (a) contains oxygen that is critical for both animals' and plants' respiration; (c) contains carbon dioxide that plants use to make food molecules; (d) contains nitrogen that provides nutrients to plants for making food;
 (e) keeps most of the planet's water warm enough to remain liquid (hence, oceans)

Q2: The atmosphere is primarily made up of _____.

(a) oxygen and hydrogen

(c) oxygen and carbon dioxide

A: (d) nitrogen and oxygen

Q3: The _____ is the layer of the atmosphere closest to Earth's surface.

- (a) lithosphere (b) troposphere
- (c) mesosphere (d) stratosphere
- A: (b) troposphere

Q4: Trace gases, also called greenhouse gases, _____.

- (a) are a direct result of human activity
- (b) allow the atmosphere to heat up or cool down
- (c) are of interest to scientists as a potential source of energy
- (d) allow the atmosphere to absorb heat, making life on earth possible

A: (d) allow the atmosphere to absorb heat, making life on earth possible

Q5: When fossil fuels are burned, it results in excess carbon dioxide in the atmosphere, _____ and raising Earth's temperature with potentially drastic consequences.

- (a) reducing the greenhouse effect
- (b) decreasing nitrogen in the troposphere
- (c) enhancing the greenhouse effect
- (d) increasing nitrogen in the troposphere

(b) water vapor and oxygen

(d) nitrogen and oxygen

A: (c) enhancing the greenhouse effect

Earth Chemistry

Q6: The ozone layer is important because _____

- (a) ozone molecules absorb ultraviolet radiation from the sun that can harm plants and animals
- (b) ozone molecules absorb ultraviolet radiation from the sun that can harm all animal life, including humans
- (c) it absorbs excess greenhouse gases that are raising Earth's temperature
- (d) it serves as a protective barrier between the troposphere and greenhouse gases

A: (a) ozone molecules absorb ultraviolet radiation from the sun that can harm plants and animals

Q7: The hydrosphere includes _____. (*Choose all that apply.*)

(a) all water above, on, and below the earth

- (b) water in all its forms within the atmosphere, such as clouds
- (c) snow and ice, but not permafrost
- (d) gaseous water
- A: (a) all water above, on, and below the earth; (b) water in all its forms within the atmosphere, such as clouds; (d) gaseous water

Q8: What percent of Earth if covered by water?	
(a) 40%	(b) 50%
(c) 70%	(d) nearly 90%
A: (c) 70%	

Q9:	Q8:	What	percent	of Ea	rth's w	ater i	s salt	t water	?
	(a)	18%							(b) 28%
	(c)	54%							(d) 97%
1.	(d) 070	0/2							

A: (d) 97%

Q10: True or False? Most of Earth's water is locked up as snow, ice, and permafrost. *A: False. Most of Earth's water is in liquid form.*

Q11: Water's chemical formula gives it several unique properties, such as _____.

(a) polarity (which helps to make water a universal solvent)

(b) extreme sensitivity to temperature changes

(c) polarity (which makes water molecules repel each other)

(d) salinity

A: (a) polarity (which helps to make water a universal solvent)

- Q12: Most water pollutants takes part in chemical reactions. Being _____ means that pollutants rely on microbes to break matter up into smaller units.
 - (a) degradable

(b) biodegradable

- (c) organic
- A: (b) biodegradable

(d) oxi-degradable

- Q13: The lithosphere includes _____.
 - (a) the Earth's core, crust, and upper mantle
 - (b) the Earth's crust and upper mantle (including tectonic plates)
 - (c) the Earth's crust and upper mantle (excluding tectonic plates)
 - (d) the rocky portions of Earth directly below the mesosphere
- A: (b) the Earth's crust and upper mantle (including tectonic plates)

Q14: True or False? The "oceanic crust" is also part of the lithosphere. *A: True.*

Q15: Weathering is the breakdown of _	through a variety of processes.
(a) rock	(b) organic and inorganic materials
(c) biomaterials	(d) rocks, plants, and remains of animals
A: (a) rock	

Q16:	Soil results due to the breakdown of	
	(a) weathering	(b) regolith
	(c) oxides	(d) limestone

A: (b) regolith

Q17: At what point are broken rock and mineral fragments considered to be soil?

- (a) When plants are able to send roots down into the fragments to extract nutrients
- (b) When the minerals have been entirely depleted from the rock fragments
- (c) When the fragments measure less than one micron across

(d) When microbes and small insects begin to inhabit the fragments

A: (a) When plants are able to send roots down into the fragments to extract nutrients

- Q18: There are two types of weathering: _____
 - (a) organic and inorganic
 - (c) physical and ionic exchange
- (b) organic and chemical
- (d) physical and chemical

A: (d) physical and chemical

Q19: Freezing of water, formation of crystals, penetration by plant roots, and abrasion are all examples of _____.

- (a) physical weathering
- (c) the lithosphere

- (b) organic weathering
- (d) chemical motion

A: (a) physical weathering

Q20: Oxidation and dissolution are examples of____

- (a) rusting
- (c) ion exchange

- (b) chemical weathering
- (d) biodegradability

A: (b) chemical weathering

A Wealth of Information. A World of Ideas.